

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/phalcon-zh/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/phalcon-zh/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

索引

 	
 Tutorial: INVO
 	
 Project Structure

 	
 Routing

 	
 Configuration

 	
 Autoloaders

 	
 Registering services

 	
 Handling the Request

 	
 Dependency Injection

 	
 Log into the Application

 	
 Securing the Backend
 	
 Events Management

 	
 Getting the ACL list

 Working with the CRUD

 The Search Form

 Performing a Search

 Creating and Updating Records

 User Components

 Changing the Title Dynamically

 ORM Caching

 	
 ORM Caching
 	
 Caching Resultsets

 	
 Forcing Cache

 	
 Caching PHQL Queries

 	
 Reusable Related Records

 	
 Caching Related Records

 	
 Caching Related Records Recursively

 	
 Caching based on Conditions

 	
 Caching PHQL execution plan

[bookmark: orm-caching]

ORM Caching

Every application is different. In most applications though, there is data that changes infrequently. One of the most common bottlenecks in terms of performance, is accessing a database. This is due to the complex connection/communication processes that PHP perform with each request to obtain data from the database. Therefore, if we want to achieve good performance, we need to add some layers of caching where the application requires it.

This chapter explains the potential areas where it is possible to implement caching to improve performance. Phalcon gives developers the tools they need to implement cashing where their application needs it.

[bookmark: caching-resultsets]

Caching Resultsets

A well established technique to avoid continuously accessing the database, is to cache resultsets that don’t change frequently, using a system with faster access (usually memory).

When Phalcon\Mvc\Model requires a service to cache resultsets, it will request it from the Dependency Injection Container. The service name is called modelsCache. Phalcon offers a cache component that can store any kind of data. We will now see how we can integrate it with our Models.

First, we will need to register the cache component as a service in the DI container.

<?php

use Phalcon\Cache\Frontend\Data as FrontendData;
use Phalcon\Cache\Backend\Memcache as BackendMemcache;

// Set the models cache service
$di->set(
 'modelsCache',
 function () {
 // Cache data for one day (default setting)
 $frontCache = new FrontendData(
 [
 'lifetime' => 86400,
]
);

 // Memcached connection settings
 $cache = new BackendMemcache(
 $frontCache,
 [
 'host' => 'localhost',
 'port' => '11211',
]
);

 return $cache;
 }
);

Phalcon offers complete control in creating and customizing the cache component before registering it as a service in the DI container. Once the cache component is properly set up, resultsets can be cached as follows:

<?php

// Get products without caching
$products = Products::find();

// Just cache the resultset. The cache will expire in 1 hour (3600 seconds)
$products = Products::find(
 [
 'cache' => [
 'key' => 'my-cache',
],
]
);

// Cache the resultset for only for 5 minutes
$products = Products::find(
 [
 'cache' => [
 'key' => 'my-cache',
 'lifetime' => 300,
],
]
);

// Use the 'cache' service from the DI instead of 'modelsCache'
$products = Products::find(
 [
 'cache' => [
 'key' => 'my-cache',
 'service' => 'cache',
],
]
);

Caching could also be applied to resultsets generated using relationships:

<?php

// Query some post
$post = Post::findFirst();

// Get comments related to a post, also cache it
$comments = $post->getComments(
 [
 'cache' => [
 'key' => 'my-key',
],
]
);

// Get comments related to a post, setting lifetime
$comments = $post->getComments(
 [
 'cache' => [
 'key' => 'my-key',
 'lifetime' => 3600,
],
]
);

When a cached resultset needs to be invalidated, you can simply delete it from the cache using the key specified as seen above.

Which resultset to cache and for how long is up to the developer, after having evaluated the needs of the application. Resultsets that change frequently should not be cached, since the cache results will be invalidated quickly. Additionally caching resultsets consumes processing cycles, therefore the cache that was intended to speed up the application actually slows it down. Resultsets that do not change frequently should be cached to minimize the database interactions. The decision on where to use caching and for how long is dictated by the application needs.

[bookmark: forcing-cache]

Forcing Cache

Earlier we saw how Phalcon\Mvc\Model integrates with the caching component provided by the framework. To make a record/resultset cacheable we pass the key cache in the array of parameters:

<?php

// Cache the resultset for only for 5 minutes
$products = Products::find(
 [
 'cache' => [
 'key' => 'my-cache',
 'lifetime' => 300,
],
]
);

This gives us the freedom to cache specific queries, however if we want to cache globally every query performed over the model, we can override the find()/findFirst() methods to force every query to be cached:

<?php

use Phalcon\Mvc\Model;

class Robots extends Model
{
 /**
 * Implement a method that returns a string key based
 * on the query parameters
 */
 protected static function _createKey($parameters)
 {
 $uniqueKey = [];

 foreach ($parameters as $key => $value) {
 if (is_scalar($value)) {
 $uniqueKey[] = $key . ':' . $value;
 } elseif (is_array($value)) {
 $uniqueKey[] = $key . ':[' . self::_createKey($value) . ']';
 }
 }

 return join(',', $uniqueKey);
 }

 public static function find($parameters = null)
 {
 // Convert the parameters to an array
 if (!is_array($parameters)) {
 $parameters = [$parameters];
 }

 // Check if a cache key wasn't passed
 // and create the cache parameters
 if (!isset($parameters['cache'])) {
 $parameters['cache'] = [
 'key' => self::_createKey($parameters),
 'lifetime' => 300,
];
 }

 return parent::find($parameters);
 }

 public static function findFirst($parameters = null)
 {
 // ...
 }
}

Accessing the database is several times slower than calculating a cache key. You’re free to implement any key generation strategy you find to better for your needs. Note that a good key avoids collisions as much as possible - meaning that different keys should return unrelated records.

This gives you full control on how the cache should be implemented for each model. If this strategy is common to several models you can create a base class for all of them:

<?php

use Phalcon\Mvc\Model;

class CacheableModel extends Model
{
 protected static function _createKey($parameters)
 {
 // ... Create a cache key based on the parameters
 }

 public static function find($parameters = null)
 {
 // ... Custom caching strategy
 }

 public static function findFirst($parameters = null)
 {
 // ... Custom caching strategy
 }
}

Then use this class as base class for each Cacheable model:

<?php

class Robots extends CacheableModel
{

}

[bookmark: caching-phql-queries]

Caching PHQL Queries

Regardless of the syntax we used to create them, all queries in the ORM are handled internally using PHQL. This language gives you much more freedom to create all kinds of queries. Of course these queries can be cached:

<?php

$phql = 'SELECT * FROM Cars WHERE name = :name:';

$query = $this->modelsManager->createQuery($phql);

$query->cache(
 [
 'key' => 'cars-by-name',
 'lifetime' => 300,
]
);

$cars = $query->execute(
 [
 'name' => 'Audi',
]
);

[bookmark: reusable-related-records]

Reusable Related Records

Some models may have relationships with other models. This allows us to easily check the records that relate to instances in memory:

<?php

// Get some invoice
$invoice = Invoices::findFirst();

// Get the customer related to the invoice
$customer = $invoice->customer;

// Print his/her name
echo $customer->name, "\n";

This example is very simple, a customer is queried and can be used as required, for example, to show its name. This also applies if we retrieve a set of invoices to show customers that correspond to these invoices:

<?php

// Get a set of invoices
// SELECT * FROM invoices;
$invoices = Invoices::find();

foreach ($invoices as $invoice) {
 // Get the customer related to the invoice
 // SELECT * FROM customers WHERE id = ?;
 $customer = $invoice->customer;

 // Print his/her name
 echo $customer->name, "\n";
}

A customer may have one or more bills so, in this example, the same customer record may be unnecessarily queried several times. To avoid this, we could mark the relationship as reusable; by doing so, we tell the ORM to automatically reuse the records from memory instead of re-querying them again and again:

<?php

use Phalcon\Mvc\Model;

class Invoices extends Model
{
 public function initialize()
 {
 $this->belongsTo(
 'customers_id',
 'Customer',
 'id',
 [
 'reusable' => true,
]
);
 }
}

Note that this type of cache works in memory only, this means that cached data are released when the request is terminated.

[bookmark: caching-related-records]

Caching Related Records

When a related record is queried, the ORM internally builds the appropriate condition and gets the required records using find()/findFirst() in the target model according to the following table:

| Type | Description | Implicit Method |
| ———- | ————————————————————— | ————— |
| Belongs-To | Returns a model instance of the related record directly | findFirst() |
| Has-One | Returns a model instance of the related record directly | findFirst() |
| Has-Many | Returns a collection of model instances of the referenced model | find() |

This means that when you get a related record you could intercept how the data is obtained by implementing the corresponding method:

<?php

// Get some invoice
$invoice = Invoices::findFirst();

// Get the customer related to the invoice
$customer = $invoice->customer; // Invoices::findFirst('...');

// Same as above
$customer = $invoice->getCustomer(); // Invoices::findFirst('...');

Accordingly, we could replace the findFirst() method in the Invoices model and implement the cache we consider most appropriate:

<?php

use Phalcon\Mvc\Model;

class Invoices extends Model
{
 public static function findFirst($parameters = null)
 {
 // ... Custom caching strategy
 }
}

[bookmark: caching-related-records-recursively]

Caching Related Records Recursively

In this scenario, we assume that every time we query a result we also retrieve their associated records. If we store the records found together with their related entities perhaps we could reduce a bit the overhead required to obtain all entities:

<?php

use Phalcon\Mvc\Model;

class Invoices extends Model
{
 protected static function _createKey($parameters)
 {
 // ... Create a cache key based on the parameters
 }

 protected static function _getCache($key)
 {
 // Returns data from a cache
 }

 protected static function _setCache($key, $results)
 {
 // Stores data in the cache
 }

 public static function find($parameters = null)
 {
 // Create a unique key
 $key = self::_createKey($parameters);

 // Check if there are data in the cache
 $results = self::_getCache($key);

 // Valid data is an object
 if (is_object($results)) {
 return $results;
 }

 $results = [];

 $invoices = parent::find($parameters);

 foreach ($invoices as $invoice) {
 // Query the related customer
 $customer = $invoice->customer;

 // Assign it to the record
 $invoice->customer = $customer;

 $results[] = $invoice;
 }

 // Store the invoices in the cache + their customers
 self::_setCache($key, $results);

 return $results;
 }

 public function initialize()
 {
 // Add relations and initialize other stuff
 }
}

Getting the invoices from the cache already obtains the customer data in just one hit, reducing the overall overhead of the operation. Note that this process can also be performed with PHQL following an alternative solution:

<?php

use Phalcon\Mvc\Model;

class Invoices extends Model
{
 public function initialize()
 {
 // Add relations and initialize other stuff
 }

 protected static function _createKey($conditions, $params)
 {
 // ... Create a cache key based on the parameters
 }

 public function getInvoicesCustomers($conditions, $params = null)
 {
 $phql = 'SELECT Invoices.*, Customers.* FROM Invoices JOIN Customers WHERE ' . $conditions;

 $query = $this->getModelsManager()->executeQuery($phql);

 $query->cache(
 [
 'key' => self::_createKey($conditions, $params),
 'lifetime' => 300,
]
);

 return $query->execute($params);
 }

}

[bookmark: caching-based-on-conditions]

Caching based on Conditions

In this scenario, the cache is implemented differently depending on the conditions received. We might decide that the cache backend should be determined by the primary key:

| Type | Cache Backend |
| ————- | ————- |
| 1 - 10000 | mongo1 |
| 10000 - 20000 | mongo2 |
| > 20000 | mongo3 |

The easiest way to achieve this is by adding a static method to the model that chooses the right cache to be used:

<?php

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public static function queryCache($initial, $final)
 {
 if ($initial >= 1 && $final < 10000) {
 $service = 'mongo1';
 } elseif ($initial >= 10000 && $final <= 20000) {
 $service = 'mongo2';
 } elseif ($initial > 20000) {
 $service = 'mongo3';
 }

 return self::find(
 [
 'id >= ' . $initial . ' AND id <= ' . $final,
 'cache' => [
 'service' => $service,
],
]
);
 }
}

This approach solves the problem, however, if we want to add other parameters such orders or conditions we would have to create a more complicated method. Additionally, this method does not work if the data is obtained using related records or a find()/findFirst():

<?php

$robots = Robots::find('id < 1000');
$robots = Robots::find("id > 100 AND type = 'A'");
$robots = Robots::find("(id > 100 AND type = 'A') AND id < 2000");

$robots = Robots::find(
 [
 "(id > ?0 AND type = 'A') AND id < ?1",
 'bind' => [100, 2000],
 'order' => 'type',
]
);

To achieve this we need to intercept the intermediate representation (IR) generated by the PHQL parser and thus customize the cache everything possible:

The first is create a custom builder, so we can generate a totally customized query:

<?php

use Phalcon\Mvc\Model\Query\Builder as QueryBuilder;

class CustomQueryBuilder extends QueryBuilder
{
 public function getQuery()
 {
 $query = new CustomQuery($this->getPhql());

 $query->setDI($this->getDI());

 return $query;
 }
}

Instead of directly returning a Phalcon\Mvc\Model\Query, our custom builder returns a CustomQuery instance, this class looks like:

<?php

use Phalcon\Mvc\Model\Query as ModelQuery;

class CustomQuery extends ModelQuery
{
 /**
 * The execute method is overridden
 */
 public function execute($params = null, $types = null)
 {
 // Parse the intermediate representation for the SELECT
 $ir = $this->parse();

 // Check if the query has conditions
 if (isset($ir['where'])) {
 // The fields in the conditions can have any order
 // We need to recursively check the conditions tree
 // to find the info we're looking for
 $visitor = new CustomNodeVisitor();

 // Recursively visits the nodes
 $visitor->visit($ir['where']);

 $initial = $visitor->getInitial();
 $final = $visitor->getFinal();

 // Select the cache according to the range
 // ...

 // Check if the cache has data
 // ...
 }

 // Execute the query
 $result = $this->_executeSelect($ir, $params, $types);

 // Cache the result
 // ...

 return $result;
 }
}

Implementing a helper (CustomNodeVisitor) that recursively checks the conditions looking for fields that tell us the possible range to be used in the cache:

<?php

class CustomNodeVisitor
{
 protected $_initial = 0;

 protected $_final = 25000;

 public function visit($node)
 {
 switch ($node['type']) {
 case 'binary-op':
 $left = $this->visit($node['left']);
 $right = $this->visit($node['right']);

 if (!$left || !$right) {
 return false;
 }

 if ($left === 'id') {
 if ($node['op'] === '>') {
 $this->_initial = $right;
 }

 if ($node['op'] === '=') {
 $this->_initial = $right;
 }

 if ($node['op'] === '>=') {
 $this->_initial = $right;
 }

 if ($node['op'] === '<') {
 $this->_final = $right;
 }

 if ($node['op'] === '<=') {
 $this->_final = $right;
 }
 }

 break;

 case 'qualified':
 if ($node['name'] === 'id') {
 return 'id';
 }

 break;

 case 'literal':
 return $node['value'];

 default:
 return false;
 }
 }

 public function getInitial()
 {
 return $this->_initial;
 }

 public function getFinal()
 {
 return $this->_final;
 }
}

Finally, we can replace the find method in the Robots model to use the custom classes we’ve created:

<?php

use Phalcon\Mvc\Model;

class Robots extends Model
{
 public static function find($parameters = null)
 {
 if (!is_array($parameters)) {
 $parameters = [$parameters];
 }

 $builder = new CustomQueryBuilder($parameters);

 $builder->from(get_called_class());

 $query = $builder->getQuery();

 if (isset($parameters['bind'])) {
 return $query->execute($parameters['bind']);
 } else {
 return $query->execute();
 }
 }
}

[bookmark: caching-phql-execution-plan]

Caching PHQL execution plan

As well as most moderns database systems PHQL internally caches the execution plan, if the same statement is executed several times PHQL reuses the previously generated plan improving performance, for a developer to take better advantage of this is highly recommended build all your SQL statements passing variable parameters as bound parameters:

<?php

for ($i = 1; $i <= 10; $i++) {
 $phql = 'SELECT * FROM Store\Robots WHERE id = ' . $i;

 $robots = $this->modelsManager->executeQuery($phql);

 // ...
}

In the above example, ten plans were generated increasing the memory usage and processing in the application. Rewriting the code to take advantage of bound parameters reduces the processing by both ORM and database system:

<?php

$phql = 'SELECT * FROM Store\Robots WHERE id = ?0';

for ($i = 1; $i <= 10; $i++) {
 $robots = $this->modelsManager->executeQuery(
 $phql,
 [
 $i,
]
);

 // ...
}

Performance can be also improved reusing the PHQL query:

<?php

$phql = 'SELECT * FROM Store\Robots WHERE id = ?0';

$query = $this->modelsManager->createQuery($phql);

for ($i = 1; $i <= 10; $i++) {
 $robots = $query->execute(
 $phql,
 [
 $i,
]
);

 // ...
}

Execution plans for queries involving prepared statements [http://en.wikipedia.org/wiki/Prepared_statement] are also cached by most database systems reducing the overall execution time, also protecting your application against SQL Injections [http://en.wikipedia.org/wiki/SQL_injection].

 Internationalization

 	
 Internationalization
 	
 Find out best available Locale

 	
 Formatting messages based on Locale

 	
 Locale-Sensitive comparison

 	
 Transliteration

[bookmark: overview]

Internationalization

Phalcon is written in C as an extension for PHP. There is a PECL [http://pecl.php.net/package/intl] extension that offers internationalization functions to PHP applications called intl [http://pecl.php.net/package/intl]. Starting from PHP 5.4/5.5 this extension is bundled with PHP. Its documentation can be found in the pages of the official PHP manual [http://www.php.net/manual/en/intro.intl.php].

Phalcon does not offer this functionality, since creating such a component would be replicating existing code.

In the examples below, we will show you how to implement the intl [http://pecl.php.net/package/intl] extension’s functionality into Phalcon powered applications.

This guide is not intended to be a complete documentation of the intl extension. Please visit its the documentation of the extension for a reference.
[bookmark: best-locale]

Find out best available Locale

There are several ways to find out the best available locale using intl [http://pecl.php.net/package/intl]. One of them is to check the HTTP Accept-Language header:

<?php

$locale = Locale::acceptFromHttp($_SERVER['HTTP_ACCEPT_LANGUAGE']);

// Locale could be something like 'en_GB' or 'en'
echo $locale;

Below method returns a locale identified. It is used to get language, culture, or regionally-specific behavior from the Locale API.

Examples of identifiers include:

	en-US (English, United States)

	ru-RU (Russian, Russia)

	zh-Hant-TW (Chinese, Traditional Script, Taiwan)

	fr-CA, fr-FR (French for Canada and France respectively)

[bookmark: formatting-messages]

Formatting messages based on Locale

Part of creating a localized application is to produce concatenated, language-neutral messages. The MessageFormatter [http://www.php.net/manual/en/class.messageformatter.php] allows for the production of those messages.

Printing numbers formatted based on some locale:

<?php

// Prints € 4 560
$formatter = new MessageFormatter('fr_FR', '€ {0, number, integer}');
echo $formatter->format([4560]);

// Prints USD$ 4,560.5
$formatter = new MessageFormatter('en_US', 'USD$ {0, number}');
echo $formatter->format([4560.50]);

// Prints ARS$ 1.250,25
$formatter = new MessageFormatter('es_AR', 'ARS$ {0, number}');
echo $formatter->format([1250.25]);

Message formatting using time and date patterns:

<?php

// Setting parameters
$time = time();
$values = [7, $time, $time];

// Prints 'At 3:50:31 PM on Apr 19, 2015, there was a disturbance on planet 7.'
$pattern = 'At {1, time} on {1, date}, there was a disturbance on planet {0, number}.';
$formatter = new MessageFormatter('en_US', $pattern);
echo $formatter->format($values);

// Prints 'À 15:53:01 le 19 avr. 2015, il y avait une perturbation sur la planète 7.'
$pattern = 'À {1, time} le {1, date}, il y avait une perturbation sur la planète {0, number}.';
$formatter = new MessageFormatter('fr_FR', $pattern);
echo $formatter->format($values);

[bookmark: locale-comparison]

Locale-Sensitive comparison

The Collator [http://www.php.net/manual/en/class.collator.php] class provides string comparison capability with support for appropriate locale-sensitive sort orderings. Check the examples below on the usage of this class:

<?php

// Create a collator using Spanish locale
$collator = new Collator('es');

// Returns that the strings are equal, in spite of the emphasis on the 'o'
$collator->setStrength(Collator::PRIMARY);
var_dump($collator->compare('una canción', 'una cancion'));

// Returns that the strings are not equal
$collator->setStrength(Collator::DEFAULT_VALUE);
var_dump($collator->compare('una canción', 'una cancion'));

[bookmark: transliteration]

Transliteration

Transliterator [http://www.php.net/manual/en/class.transliterator.php] provides transliteration of strings:

<?php

$id = 'Any-Latin; NFD; [:Nonspacing Mark:] Remove; NFC; [:Punctuation:] Remove; Lower();';
$transliterator = Transliterator::create($id);

$string = "garçon-étudiant-où-L'école";
echo $transliterator->transliterate($string); // garconetudiantoulecole

 New Feature Request

New Feature Request

A NFR is a short document explaining how a new feature request must be submitted, how it can be implemented, and how it can help core developers and others to understand implement it.

A NFR contains: * Suggested syntax * Suggested class names and methods * A short documentation * If the feature is already implemented in other frameworks, a short explanation of how that was implemented and its advantages

In the following cases a new feature request will be rejected: * The feature makes the framework slow * The feature doesn’t provide any additional value to the framework * The NFR is not clear, bad documentation, unclear explanation, etc. * The NFR doesn’t follow the current guidelines/philosophy of the framework * The NFR affects/breaks applications developed in current/older versions of the framework * The original poster doesn’t provide feedback/input when requested * It’s technically impossible to implement * It can only be used in the development/testing stages * Submitted/proposed classes/components don’t follow the Single Responsibility Principle [http://en.wikipedia.org/wiki/Single_responsibility_principle] * Static methods aren’t allowed

To send a NFR you don’t need to provide Zephir or C code or develop the feature. New Feture requests explain the goal of the intended implementation and open discussion on how best to implement it.

All NFRs should be posted as a new issue on Github [https://github.com/phalcon/cphalcon/issues].

 Increasing Performance

 	
 Increasing Performance
 	
 Profile on the Server
 	
 Profiling with Xhprof

 	
 Profiling SQL Statements

 Profile on the Client

 Profile with Chrome/Firefox

 Yahoo! YSlow

 Profile with Speed Tracer

 Use a recent PHP version

 Use a PHP Bytecode Cache

 Do blocking work in the background

 Google Page Speed

 2017-04-05 - 3.1.2

2017-04-05 - 3.1.2 [https://github.com/phalcon/cphalcon/releases/tag/v3.1.2]

	Fixed PHP 7.1 issues #12055 [https://github.com/phalcon/cphalcon/issues/12055]

	Fixed Imagick::getVersion() error in some systems #12729 [https://github.com/phalcon/cphalcon/pull/12729]

	Fixed Phalcon\Mvc\Model::_doLowInsert to properly set snapshot when having default values and public properties #12766 [https://github.com/phalcon/cphalcon/issues/12766]

2017-03-25 - 3.1.1 [https://github.com/phalcon/cphalcon/releases/tag/v3.1.1]

	Fixed undefined index warning on existing cached resultsets

	Fixed Phalcon\Mvc\Model::_dowLowUpdate warning first argument is not an array #12742 [https://github.com/phalcon/cphalcon/issues/12742]

2017-03-22 - 3.1.0 [https://github.com/phalcon/cphalcon/releases/tag/v3.1.0]

	Added Phalcon\Validation\Validator\Callback, Phalcon\Validation::getData

	Added the ability to truncate database tables

	Added Phalcon\Mvc\Model\Binder, class used for binding models to parameters in dispatcher, micro, added Phalcon\Dispatcher::getBoundModels and Phalcon\Mvc\Micro::getBoundModels to getting bound models, added Phalcon\Mvc\Micro\Collection\LazyLoader::callMethod

	Added afterBinding event to Phalcon\Dispatcher and Phalcon\Mvc\Micro, added Phalcon\Mvc\Micro::afterBinding

	Added the ability to set custom Resultset class returned by find() #12166 [https://github.com/phalcon/cphalcon/issues/12166]

	Added the ability to clear appended and prepended title elements (Phalcon\Tag::appendTitle, Phalcon\Tag::prependTitle). Now you can use array to add multiple titles. For more details check #12238 [https://github.com/phalcon/cphalcon/issues/12238].

	Added the ability to specify what empty means in the ‘allowEmpty’ option of the validators. Now it accepts as well an array specifying what’s empty, for example [‘’, false]

	Added the ability to use Phalcon\Validation with Phalcon\Mvc\Collection, deprecated Phalcon\Mvc\Model\Validator classes

	Added the value of the object intanceof Interface to Phalcon\Acl\Adapter\Memory

	Added the ability to get original values from Phalcon\Mvc\Model\Binder, added Phalcon\Mvc\Micro::getModelBinder, Phalcon\Dispatcher::getModelBinder

	Added prepend parameter to Phalcon\Loader::register to specify autoloader’s loading order to top most

	Fixes internal cache saving in Phalcon\Mvc\Model\Binder when no cache backend is used

	Fixed Phalcon\Session\Bag::remove to initialize the bag before removing a value #12647 [https://github.com/phalcon/cphalcon/pull/12647]

	Fixed Phalcon\Mvc\Model::getChangedFields to correct detect changes from NULL to Zero #12628 [https://github.com/phalcon/cphalcon/issues/12628]

	Fixed Phalcon\Mvc\Model to create/refresh snapshot after create/update/refresh operation #11007 [https://github.com/phalcon/cphalcon/issues/11007], #11818 [https://github.com/phalcon/cphalcon/issues/11818], #11424 [https://github.com/phalcon/cphalcon/issues/11424]

	Fixed Phalcon\Mvc\Model::validate to correctly set code message #12645 [https://github.com/phalcon/cphalcon/issues/12645]

	Fixed Phalcon\Mvc\Model to correctly add error when try to save empty string value to not null and not default column #12688 [https://github.com/phalcon/cphalcon/issues/12688]

	Fixed Phalcon\Validation\Validator\Uniqueness collection persistent condition

	Fixed Phalcon\Loader::autoLoad to prevent PHP warning #12684 [https://github.com/phalcon/cphalcon/pull/12684]

	Fixed Phalcon\Mvc\Model\Query::_executeSelect to correctly get the column map #12715 [https://github.com/phalcon/cphalcon/issues/12715]

	Fixed params view scope for PHP 5 #12648 [https://github.com/phalcon/cphalcon/issues/12648]

2017-02-20 - v.3.0.4 [https://github.com/phalcon/cphalcon/releases/tag/v3.0.4]

	Fixed Isnull check is not correct when the model field defaults to an empty string. #12507 [https://github.com/phalcon/cphalcon/issues/12507]

	Fixed Phalcon\Forms\Element::label to accept 0 as label instead of validating it as empty. #12148 [https://github.com/phalcon/cphalcon/issues/12148]

	Fixed Phalcon\Crypt::getAvailableCiphers, Phalcon\Crypt::decrypt, Phalcon\Crypt::encrypt by getting missed aliases for ciphers #12539 [https://github.com/phalcon/cphalcon/pull/12539]

	Fixed Phalcon\Mvc\Model by adding missed use statement for ResultsetInterface #12574 [https://github.com/phalcon/cphalcon/pull/12574]

	Fixed adding role after setting default action #12573 [https://github.com/phalcon/cphalcon/issues/12573]

	Fixed except option in Phalcon\Validation\Validator\Uniquenss to allow using except fields other than unique fields

	Cleaned Phalcon\Translate\Adapter\Gettext::query and removed ability to pass custom domain #12598 [https://github.com/phalcon/cphalcon/issues/12598], #12606 [https://github.com/phalcon/cphalcon/pull/12606]

	Fixed Phalcon\Validation\Message\Group::offsetUnset to correct unsetting a message by index #12455 [https://github.com/phalcon/cphalcon/issues/12455]

	Fix using Phalcon\Acl\Role and Phalcon\Acl\Resource as parameters for Phalcon\Acl\Adapter\Memory::isAllowed

 Images

 	
 Improving Performance with Cache

[bookmark: overview]

Images

Phalcon\Image is the component that allows you to manipulate image files. Multiple operations can be performed on the same image object.

[bookmark: adapters]

Adapters

This component makes use of adapters to encapsulate specific image manipulator programs. The following image manipulator programs are supported:

| Class | Description |
| ———————————- | ———————————————————————————– |
| Phalcon\Image\Adapter\Gd | Requires the GD PHP extension [http://php.net/manual/en/book.image.php] |
| Phalcon\Image\Adapter\Imagick | Requires the ImageMagick PHP extension [http://php.net/manual/en/book.imagick.php] |

[bookmark: adapters-custom]

Implementing your own adapters

The Phalcon\Image\AdapterInterface interface must be implemented in order to create your own image adapters or extend the existing ones.

[bookmark: saving-rendering]

Saving and rendering images

Before we begin with the various features of the image component, it’s worth understanding how to save and render these images.

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

// ...

// Overwrite the original image
$image->save();

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

// ...

// Save to 'new-image.jpg'
$image->save('new-image.jpg');

You can also change the format of the image:

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

// ...

// Save as a PNG file
$image->save('image.png');

When saving as a JPEG, you can also specify the quality as the second parameter:

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

// ...

// Save as a JPEG with 80% quality
$image->save('image.jpg', 80);

[bookmark: resizing]

Resizing images

There are several modes of resizing:

	\Phalcon\Image::WIDTH

	\Phalcon\Image::HEIGHT

	\Phalcon\Image::NONE

	\Phalcon\Image::TENSILE

	\Phalcon\Image::AUTO

	\Phalcon\Image::INVERSE

	\Phalcon\Image::PRECISE

[bookmark: resizing-width]

\Phalcon\Image::WIDTH

The height will automatically be generated to keep the proportions the same; if you specify a height, it will be ignored.

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

$image->resize(
 300,
 null,
 \Phalcon\Image::WIDTH
);

$image->save('resized-image.jpg');

[bookmark: resizing-height]

\Phalcon\Image::HEIGHT

The width will automatically be generated to keep the proportions the same; if you specify a width, it will be ignored.

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

$image->resize(
 null,
 300,
 \Phalcon\Image::HEIGHT
);

$image->save('resized-image.jpg');

[bookmark: resizing-none]

\Phalcon\Image::NONE

	The NONE constant ignores the original image’s ratio.

	Neither width and height are required.

	If a dimension is not specified, the original dimension will be used.

	If the new proportions differ from the original proportions, the image may be distorted and stretched.

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

$image->resize(
 400,
 200,
 \Phalcon\Image::NONE
);

$image->save('resized-image.jpg');

[bookmark: resizing-tensile]

\Phalcon\Image::TENSILE

	Similar to the NONE constant, the TENSILE constant ignores the original image’s ratio.

	Both width and height are required.

	If the new proportions differ from the original proportions, the image may be distorted and stretched.

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

$image->resize(
 400,
 200,
 \Phalcon\Image::TENSILE
);

$image->save('resized-image.jpg');

[bookmark: cropping]

Cropping images

For example, to get a 100px by 100px square from the centre of the image:

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

$width = 100;
$height = 100;
$offsetX = (($image->getWidth() - $width) / 2);
$offsetY = (($image->getHeight() - $height) / 2);

$image->crop($width, $height, $offsetX, $offsetY);

$image->save('cropped-image.jpg');

[bookmark: rotating]

Rotating images

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

// Rotate an image by 90 degrees clockwise
$image->rotate(90);

$image->save('rotated-image.jpg');

[bookmark: flipping]

Flipping images

You can flip an image horizontally (using the \Phalcon\Image::HORIZONTAL constant) and vertically (using the \Phalcon\Image::VERTICAL constant):

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

// Flip an image horizontally
$image->flip(
 \Phalcon\Image::HORIZONTAL
);

$image->save('flipped-image.jpg');

[bookmark: sharpening]

Sharpening images

The sharpen() method takes a single parameter - an integer between 0 (no effect) and 100 (very sharp):

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

$image->sharpen(50);

$image->save('sharpened-image.jpg');

[bookmark: watermarks]

Adding watermarks to images

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

$watermark = new \Phalcon\Image\Adapter\Gd('me.jpg');

// Put the watermark in the top left corner
$offsetX = 10;
$offsetY = 10;

$opacity = 70;

$image->watermark(
 $watermark,
 $offsetX,
 $offsetY,
 $opacity
);

$image->save('watermarked-image.jpg');

Of course, you can also manipulate the watermarked image before applying it to the main image:

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

$watermark = new \Phalcon\Image\Adapter\Gd('me.jpg');

$watermark->resize(100, 100);
$watermark->rotate(90);
$watermark->sharpen(5);

// Put the watermark in the bottom right corner with a 10px margin
$offsetX = ($image->getWidth() - $watermark->getWidth() - 10);
$offsetY = ($image->getHeight() - $watermark->getHeight() - 10);

$opacity = 70;

$image->watermark(
 $watermark,
 $offsetX,
 $offsetY,
 $opacity
);

$image->save('watermarked-image.jpg');

[bookmark: blurring]

Blurring images

The blur() method takes a single parameter - an integer between 0 (no effect) and 100 (very blurry):

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

$image->blur(50);

$image->save('blurred-image.jpg');

[bookmark: pixelating]

Pixelating images

The pixelate() method takes a single parameter - the higher the integer, the more pixelated the image becomes:

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

$image->pixelate(10);

$image->save('pixelated-image.jpg');

 Request Environment

 	
 Request Environment
 	
 Getting Values

 	
 Accessing the Request from Controllers

 	
 Uploading Files

 	
 Working with Headers

[bookmark: overview]

Request Environment

Every HTTP request (usually originated by a browser) contains additional information regarding the request such as header data, files, variables, etc. A web based application needs to parse that information so as to provide the correct response back to the requester. Phalcon\Http\Request encapsulates the information of the request, allowing you to access it in an object-oriented way.

<?php

use Phalcon\Http\Request;

// Getting a request instance
$request = new Request();

// Check whether the request was made with method POST
if ($request->isPost()) {
 // Check whether the request was made with Ajax
 if ($request->isAjax()) {
 echo 'Request was made using POST and AJAX';
 }
}

[bookmark: getting-values]

Getting Values

PHP automatically fills the superglobal arrays $_GET and $_POST depending on the type of the request. These arrays contain the values present in forms submitted or the parameters sent via the URL. The variables in the arrays are never sanitized and can contain illegal characters or even malicious code, which can lead to SQL injection [http://en.wikipedia.org/wiki/SQL_injection] or Cross Site Scripting (XSS) [http://en.wikipedia.org/wiki/Cross-site_scripting] attacks.

Phalcon\Http\Request allows you to access the values stored in the $_REQUEST, $_GET and $_POST arrays and sanitize or filter them with the filter service, (by default Phalcon\Filter). The following examples offer the same behavior:

<?php

use Phalcon\Filter;

$filter = new Filter();

// Manually applying the filter
$email = $filter->sanitize($_POST['user_email'], 'email');

// Manually applying the filter to the value
$email = $filter->sanitize($request->getPost('user_email'), 'email');

// Automatically applying the filter
$email = $request->getPost('user_email', 'email');

// Setting a default value if the param is null
$email = $request->getPost('user_email', 'email', 'some@example.com');

// Setting a default value if the param is null without filtering
$email = $request->getPost('user_email', null, 'some@example.com');

[bookmark: controller-access]

Accessing the Request from Controllers

The most common place to access the request environment is in an action of a controller. To access the Phalcon\Http\Request object from a controller you will need to use the $this->request public property of the controller:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function indexAction()
 {

 }

 public function saveAction()
 {
 // Check if request has made with POST
 if ($this->request->isPost()) {
 // Access POST data
 $customerName = $this->request->getPost('name');
 $customerBorn = $this->request->getPost('born');
 }
 }
}

[bookmark: uploading-files]

Uploading Files

Another common task is file uploading. Phalcon\Http\Request offers an object-oriented way to achieve this task:

<?php

use Phalcon\Mvc\Controller;

class PostsController extends Controller
{
 public function uploadAction()
 {
 // Check if the user has uploaded files
 if ($this->request->hasFiles()) {
 $files = $this->request->getUploadedFiles();

 // Print the real file names and sizes
 foreach ($files as $file) {
 // Print file details
 echo $file->getName(), ' ', $file->getSize(), '\n';

 // Move the file into the application
 $file->moveTo(
 'files/' . $file->getName()
);
 }
 }
 }
}

Each object returned by Phalcon\Http\Request::getUploadedFiles() is an instance of the Phalcon\Http\Request\File class. Using the $_FILES superglobal array offers the same behavior. Phalcon\Http\Request\File> encapsulates only the information related to each file uploaded with the request.

[bookmark: working-with-headers]

Working with Headers

As mentioned above, request headers contain useful information that allow us to send the proper response back to the user. The following examples show usages of that information:

<?php

// Get the Http-X-Requested-With header
$requestedWith = $request->getHeader('HTTP_X_REQUESTED_WITH');

if ($requestedWith === 'XMLHttpRequest') {
 echo 'The request was made with Ajax';
}

// Same as above
if ($request->isAjax()) {
 echo 'The request was made with Ajax';
}

// Check the request layer
if ($request->isSecure()) {
 echo 'The request was made using a secure layer';
}

// Get the servers's IP address. ie. 192.168.0.100
$ipAddress = $request->getServerAddress();

// Get the client's IP address ie. 201.245.53.51
$ipAddress = $request->getClientAddress();

// Get the User Agent (HTTP_USER_AGENT)
$userAgent = $request->getUserAgent();

// Get the best acceptable content by the browser. ie text/xml
$contentType = $request->getAcceptableContent();

// Get the best charset accepted by the browser. ie. utf-8
$charset = $request->getBestCharset();

// Get the best language accepted configured in the browser. ie. en-us
$language = $request->getBestLanguage();

 Phalcon Developer Tools

 	
 Phalcon Developer Tools
 	
 Download

 	
 Installation

 	
 Available Commands

 	
 Generating a Project Skeleton

 	
 Generating Controllers

 	
 Preparing Database Settings

 	
 Generating Models

 	
 Scaffold a CRUD

 	
 Web Interface to Tools

 	
 Integrating Tools with PhpStorm IDE

 	
 Conclusion

[bookmark: overview]

Phalcon Developer Tools

These tools are a collection of useful scripts to generate skeleton code. Core components of your application can be generated with a simple command, allowing you to easily develop applications using Phalcon.

If you prefer to use the web version instead of the console, this blog post offers more information.
[bookmark: download]

Download

You can download or clone a cross platform package containing the developer tools from Github [https://github.com/phalcon/phalcon-devtools].

[bookmark: installation]

Installation

These are detailed instructions on how to install the developer tools on different platforms:

Linux : MacOS : Windows

[bookmark: available-commands]

Available Commands

You can get a list of available commands in Phalcon tools by typing: :code:phalcon commands

$ phalcon commands

Phalcon DevTools (3.0.0)

Available commands:
 commands (alias of: list, enumerate)
 controller (alias of: create-controller)
 module (alias of: create-module)
 model (alias of: create-model)
 all-models (alias of: create-all-models)
 project (alias of: create-project)
 scaffold (alias of: create-scaffold)
 migration (alias of: create-migration)
 webtools (alias of: create-webtools)

[bookmark: project-skeleton]

Generating a Project Skeleton

You can use Phalcon tools to generate pre-defined project skeletons for your applications with Phalcon framework. By default the project skeleton generator will use mod_rewrite for Apache. Type the following command on your web server document root:

$ pwd

/Applications/MAMP/htdocs

$ phalcon create-project store

The above recommended project structure was generated:

[image:]

You could add the parameter --help to get help on the usage of a certain script:

$ phalcon project --help

Phalcon DevTools (3.0.0)

Help:
 Creates a project

Usage:
 project [name] [type] [directory] [enable-webtools]

Arguments:
 help Shows this help text

Example
 phalcon project store simple

Options:
 --name Name of the new project
 --enable-webtools Determines if webtools should be enabled [optional]
 --directory=s Base path on which project will be created [optional]
 --type=s Type of the application to be generated (cli, micro, simple, modules)
 --template-path=s Specify a template path [optional]
 --use-config-ini Use a ini file as configuration file [optional]
 --trace Shows the trace of the framework in case of exception. [optional]
 --help Shows this help

Accessing the project from the web server will show you:

[image:]

[bookmark: generating-controllers]

Generating Controllers

The command create-controller generates controller skeleton structures. It’s important to invoke this command inside a directory that already has a Phalcon project.

$ phalcon create-controller --name test

The following code is generated by the script:

<?php

use Phalcon\Mvc\Controller;

class TestController extends Controller
{
 public function indexAction()
 {

 }
}

[bookmark: database-settings]

Preparing Database Settings

When a project is generated using developer tools. A configuration file can be found in app/config/config.ini. To generate models or scaffold, you will need to change the settings used to connect to your database.

Change the database section in your config.ini file:

[database]
adapter = Mysql
host = "127.0.0.1"
username = "root"
password = "secret"
dbname = "store_db"

[phalcon]
controllersDir = "../app/controllers/"
modelsDir = "../app/models/"
viewsDir = "../app/views/"
baseUri = "/store/"

[bookmark: generating-models]

Generating Models

There are several ways to create models. You can create all models from the default database connection or some selectively. Models can have public attributes for the field representations or setters/getters can be used.

Options:
 --name=s Table name
 --schema=s Name of the schema. [optional]
 --namespace=s Model's namespace [optional]
 --get-set Attributes will be protected and have setters/getters. [optional]
 --extends=s Model extends the class name supplied [optional]
 --excludefields=l Excludes fields defined in a comma separated list [optional]
 --doc Helps to improve code completion on IDEs [optional]
 --directory=s Base path on which project will be created [optional]
 --force Rewrite the model. [optional]
 --trace Shows the trace of the framework in case of exception. [optional]
 --mapcolumn Get some code for map columns. [optional]
 --abstract Abstract Model [optional]

The simplest way to generate a model is:

$ phalcon model products

$ phalcon model --name tablename

All table fields are declared public for direct access.

<?php

use Phalcon\Mvc\Model;

class Products extends Model
{
 /**
 * @var integer
 */
 public $id;

 /**
 * @var integer
 */
 public $typesId;

 /**
 * @var string
 */
 public $name;

 /**
 * @var string
 */
 public $price;

 /**
 * @var integer
 */
 public $quantity;

 /**
 * @var string
 */
 public $status;
}

By adding the --get-set you can generate the fields with protected variables and public setter/getter methods. Those methods can help in business logic implementation within the setter/getter methods.

<?php

use Phalcon\Mvc\Model;

class Products extends Model
{
 /**
 * @var integer
 */
 protected $id;

 /**
 * @var integer
 */
 protected $typesId;

 /**
 * @var string
 */
 protected $name;

 /**
 * @var string
 */
 protected $price;

 /**
 * @var integer
 */
 protected $quantity;

 /**
 * @var string
 */
 protected $status;

 /**
 * Method to set the value of field id
 *
 * @param integer $id
 */
 public function setId($id)
 {
 $this->id = $id;
 }

 /**
 * Method to set the value of field typesId
 *
 * @param integer $typesId
 */
 public function setTypesId($typesId)
 {
 $this->typesId = $typesId;
 }

 // ...

 /**
 * Returns the value of field status
 *
 * @return string
 */
 public function getStatus()
 {
 return $this->status;
 }
}

A nice feature of the model generator is that it keeps changes made by the developer between code generations. This allows the addition or removal of fields and properties, without worrying about losing changes made to the model itself. The following screencast shows you how it works:

 Returning Responses

 	
 Returning Responses
 	
 Working with Headers

 	
 Making Redirections

 	
 HTTP Cache
 	
 Setting an Expiration Time

 	
 Cache-Control

 	
 E-Tag

[bookmark: overview]

Returning Responses

Part of the HTTP cycle is returning responses to clients. Phalcon\Http\Response is the Phalcon component designed to achieve this task. HTTP responses are usually composed by headers and body. The following is an example of basic usage:

<?php

use Phalcon\Http\Response;

// Getting a response instance
$response = new Response();

// Set status code
$response->setStatusCode(404, 'Not Found');

// Set the content of the response
$response->setContent("Sorry, the page doesn't exist");

// Send response to the client
$response->send();

If you are using the full MVC stack there is no need to create responses manually. However, if you need to return a response directly from a controller’s action follow this example:

<?php

use Phalcon\Http\Response;
use Phalcon\Mvc\Controller;

class FeedController extends Controller
{
 public function getAction()
 {
 // Getting a response instance
 $response = new Response();

 $feed = // ... Load here the feed

 // Set the content of the response
 $response->setContent(
 $feed->asString()
);

 // Return the response
 return $response;
 }
}

[bookmark: working-with-headers]

Working with Headers

Headers are an important part of the HTTP response. It contains useful information about the response state like the HTTP status, type of response and much more.

You can set headers in the following way:

<?php

// Setting a header by its name
$response->setHeader('Content-Type', 'application/pdf');
$response->setHeader('Content-Disposition', "attachment; filename='downloaded.pdf'");

// Setting a raw header
$response->setRawHeader('HTTP/1.1 200 OK');

A Phalcon\Http\Response\Headers bag internally manages headers. This class retrieves the headers before sending it to client:

<?php

// Get the headers bag
$headers = $response->getHeaders();

// Get a header by its name
$contentType = $headers->get('Content-Type');

[bookmark: redirections]

Making Redirections

With Phalcon\Http\Response you can also execute HTTP redirections:

<?php

// Redirect to the default URI
$response->redirect();

// Redirect to the local base URI
$response->redirect('posts/index');

// Redirect to an external URL
$response->redirect('http://en.wikipedia.org', true);

// Redirect specifying the HTTP status code
$response->redirect('http://www.example.com/new-location', true, 301);

All internal URIs are generated using the url service (by default Phalcon\Mvc\Url). This example demonstrates how you can redirect using a route you have defined in your application:

<?php

// Redirect based on a named route
return $response->redirect(
 [
 'for' => 'index-lang',
 'lang' => 'jp',
 'controller' => 'index',
]
);

Note that a redirection doesn’t disable the view component, so if there is a view associated with the current action it will be executed anyway. You can disable the view from a controller by executing $this->view->disable();

[bookmark: http-cache]

HTTP Cache

One of the easiest ways to improve the performance in your applications and reduce the traffic is using HTTP Cache. Most modern browsers support HTTP caching and is one of the reasons why many websites are currently fast.

HTTP Cache can be altered in the following header values sent by the application when serving a page for the first time:

	Expires: With this header the application can set a date in the future or the past telling the browser when the page must expire.

	Cache-Control: This header allows to specify how much time a page should be considered fresh in the browser.

	Last-Modified: This header tells the browser which was the last time the site was updated avoiding page re-loads

	ETag: An etag is a unique identifier that must be created including the modification timestamp of the current page

[bookmark: http-cache-expiration-time]

Setting an Expiration Time

The expiration date is one of the easiest and most effective ways to cache a page in the client (browser). Starting from the current date we add the amount of time the page will be stored in the browser cache. Until this date expires no new content will be requested from the server:

<?php

$expiryDate = new DateTime();
$expiryDate->modify('+2 months');

$response->setExpires($expiryDate);

The Response component automatically shows the date in GMT timezone as expected in an Expires header.

If we set this value to a date in the past the browser will always refresh the requested page:

<?php

$expiryDate = new DateTime();
$expiryDate->modify('-10 minutes');

$response->setExpires($expiryDate);

Browsers rely on the client’s clock to assess if this date has passed or not. The client clock can be modified to make pages expire and this may represent a limitation for this cache mechanism.

[bookmark: http-cache-control]

Cache-Control

This header provides a safer way to cache the pages served. We simply must specify a time in seconds telling the browser how long it must keep the page in its cache:

<?php

// Starting from now, cache the page for one day
$response->setHeader('Cache-Control', 'max-age=86400');

The opposite effect (avoid page caching) is achieved in this way:

<?php

// Never cache the served page
$response->setHeader('Cache-Control', 'private, max-age=0, must-revalidate');

[bookmark: http-cache-etag]

E-Tag

An entity-tag or E-tag is a unique identifier that helps the browser realize if the page has changed or not between two requests. The identifier must be calculated taking into account that this must change if the previously served content has changed:

<?php

// Calculate the E-Tag based on the modification time of the latest news
$mostRecentDate = News::maximum(
 [
 'column' => 'created_at'
]
);

$eTag = md5($mostRecentDate);

// Send an E-Tag header
$response->setHeader('E-Tag', $eTag);

 Improving Performance with Cache

 	
 Improving Performance with Cache
 	
 When to implement cache?

 	
 Caching Behavior

 	
 Factory

 	
 Caching Output Fragments

 	
 Caching Arbitrary Data
 	
 File Backend Example

 	
 Memcached Backend Example

 Querying the cache

 Deleting data from the cache

 Checking cache existence

 Lifetime

 Multi-Level Cache

 Frontend Adapters

 Implementing your own Frontend adapters

 Backend Adapters

 Implementing your own Backend adapters

 File Backend Options

 Libmemcached Backend Options

 Memcache Backend Options

 APC Backend Options

 Mongo Backend Options

 XCache Backend Options

 Redis Backend Options

 Storing data in the Session

 	
 Storing data in the Session
 	
 Starting the Session

 	
 Storing/Retrieving data in Session

 	
 Removing/Destroying Sessions

 	
 Isolating Session Data between Applications

 	
 Session Bags

 	
 Persistent Data in Components

 	
 Implementing your own adapters

[bookmark: overview]

Storing data in the Session

The session component provides object-oriented wrappers to access session data.

Reasons to use this component instead of raw-sessions:

	You can easily isolate session data across applications on the same domain

	Intercept where session data is set/get in your application

	Change the session adapter according to the application needs

[bookmark: start]

Starting the Session

Some applications are session-intensive, almost any action that performs requires access to session data. There are others who access session data casually. Thanks to the service container, we can ensure that the session is accessed only when it’s clearly needed:

<?php

use Phalcon\Session\Adapter\Files as Session;

// Start the session the first time when some component request the session service
$di->setShared(
 'session',
 function () {
 $session = new Session();

 $session->start();

 return $session;
 }
);

[bookmark: store]

Storing/Retrieving data in Session

From a controller, a view or any other component that extends Phalcon\Di\Injectable you can access the session service and store items and retrieve them in the following way:

<?php

use Phalcon\Mvc\Controller;

class UserController extends Controller
{
 public function indexAction()
 {
 // Set a session variable
 $this->session->set('user-name', 'Michael');
 }

 public function welcomeAction()
 {
 // Check if the variable is defined
 if ($this->session->has('user-name')) {
 // Retrieve its value
 $name = $this->session->get('user-name');
 }
 }

}

[bookmark: remove-destroy]

Removing/Destroying Sessions

It’s also possible remove specific variables or destroy the whole session:

<?php

use Phalcon\Mvc\Controller;

class UserController extends Controller
{
 public function removeAction()
 {
 // Remove a session variable
 $this->session->remove('user-name');
 }

 public function logoutAction()
 {
 // Destroy the whole session
 $this->session->destroy();
 }
}

[bookmark: data-isolation]

Isolating Session Data between Applications

Sometimes a user can use the same application twice, on the same server, in the same session. Surely, if we use variables in session, we want that every application have separate session data (even though the same code and same variable names). To solve this, you can add a prefix for every session variable created in a certain application:

<?php

use Phalcon\Session\Adapter\Files as Session;

// Isolating the session data
$di->set(
 'session',
 function () {
 // All variables created will prefixed with 'my-app-1'
 $session = new Session(
 [
 'uniqueId' => 'my-app-1',
]
);

 $session->start();

 return $session;
 }
);

Adding a unique ID is not necessary.

[bookmark: bags]

Session Bags

Phalcon\Session\Bag is a component that helps separating session data into namespaces. Working by this way you can easily create groups of session variables into the application. By only setting the variables in the bag, it’s automatically stored in session:

<?php

use Phalcon\Session\Bag as SessionBag;

$user = new SessionBag('user');

$user->setDI($di);

$user->name = 'Kimbra Johnson';
$user->age = 22;

[bookmark: data-persistency]

Persistent Data in Components

Controller, components and classes that extends Phalcon\Di\Injectable may inject a Phalcon\Session\Bag. This class isolates variables for every class. Thanks to this you can persist data between requests in every class in an independent way.

<?php

use Phalcon\Mvc\Controller;

class UserController extends Controller
{
 public function indexAction()
 {
 // Create a persistent variable 'name'
 $this->persistent->name = 'Laura';
 }

 public function welcomeAction()
 {
 if (isset($this->persistent->name)) {
 echo 'Welcome, ', $this->persistent->name;
 }
 }
}

In a component:

<?php

use Phalcon\Mvc\User\Component;

class Security extends Component
{
 public function auth()
 {
 // Create a persistent variable 'name'
 $this->persistent->name = 'Laura';
 }

 public function getAuthName()
 {
 return $this->persistent->name;
 }
}

The data added to the session ($this->session) are available throughout the application, while persistent ($this->persistent) can only be accessed in the scope of the current class.

[bookmark: custom-adapters]

Implementing your own adapters

The Phalcon\Session\AdapterInterface interface must be implemented in order to create your own session adapters or extend the existing ones.

There are more adapters available for this components in the Phalcon Incubator [https://github.com/phalcon/incubator/tree/master/Library/Phalcon/Session/Adapter]

 Database Migrations

 	
 Pagination
 	
 Data Adapters

 	
 Examples

 	
 Using Adapters

 	
 Page Attributes

 	
 Implementing your own adapters

[bookmark: overview]

Database Migrations

Migrations are a convenient way for you to alter your database in a structured and organized manner.

Migrations are available in Phalcon Developer Tools You need at least Phalcon Framework version 0.5.0 to use developer tools.
Often in development we need to update changes in production environments. Some of these changes could be database modifications like new fields, new tables, removing indexes, etc.

When a migration is generated a set of classes are created to describe how your database is structured at that particular moment. These classes can be used to synchronize the schema structure on remote databases setting your database ready to work with the new changes that your application implements. Migrations describe these transformations using plain PHP.

 Database Abstraction Layer

 	
 Database Abstraction Layer
 	
 Database Adapters
 	
 Implementing your own adapters

 Database Dialects

 Implementing your own dialects

 Connecting to Databases

 Setting up additional PDO options

 Finding Rows

 Binding Parameters

 Inserting/Updating/Deleting Rows

 Transactions and Nested Transactions

 Database Events

 Profiling SQL Statements

 Logging SQL Statements

 Implementing your own Logger

 Describing Tables/Views

 Creating/Altering/Dropping Tables

 Creating Tables

 Altering Tables

 Dropping Tables

 Pagination

 	
 Pagination
 	
 Data Adapters

 	
 Examples

 	
 Using Adapters

 	
 Page Attributes

 	
 Implementing your own adapters

[bookmark: overview]

Pagination

The process of pagination takes place when we need to present big groups of arbitrary data gradually. Phalcon\Paginator offers a fast and convenient way to split these sets of data into browsable pages.

[bookmark: data-adapters]

Data Adapters

This component makes use of adapters to encapsulate different sources of data:

| Adapter | Description |
| ——————————————- | ——- |
| Phalcon\Paginator\Adapter\NativeArray | Use a PHP array as source data |
| Phalcon\Paginator\Adapter\Model | Use a Phalcon\Mvc\Model\Resultset object as source data. Since PDO doesn’t support scrollable cursors this adapter shouldn’t be used to paginate a large number of records |
| Phalcon\Paginator\Adapter\QueryBuilder | Use a Phalcon\Mvc\Model\Query\Builder object as source data |

[bookmark: examples]

Examples

In the example below, the paginator will use the result of a query from a model as its source data, and limit the displayed data to 10 records per page:

<?php

use Phalcon\Paginator\Adapter\Model as PaginatorModel;

// Current page to show
// In a controller/component this can be:
// $this->request->getQuery('page', 'int'); // GET
// $this->request->getPost('page', 'int'); // POST
$currentPage = (int) $_GET['page'];

// The data set to paginate
$robots = Robots::find();

// Create a Model paginator, show 10 rows by page starting from $currentPage
$paginator = new PaginatorModel(
 [
 'data' => $robots,
 'limit' => 10,
 'page' => $currentPage,
]
);

// Get the paginated results
$page = $paginator->getPaginate();

The $currentPage variable controls the page to be displayed. The $paginator->getPaginate() returns a $page object that contains the paginated data. It can be used for generating the pagination:

<table>
 <tr>
 <th>Id</th>
 <th>Name</th>
 <th>Type</th>
 </tr>
 <?php foreach ($page->items as $item) { ?>
 <tr>
 <td><?php echo $item->id; ?></td>
 <td><?php echo $item->name; ?></td>
 <td><?php echo $item->type; ?></td>
 </tr>
 <?php } ?>
</table>

The $page object also contains navigation data:

First
<a href='/robots/search?page=<?= $page->before; ?>'>Previous
<a href='/robots/search?page=<?= $page->next; ?>'>Next
<a href='/robots/search?page=<?= $page->last; ?>'>Last

<?php echo 'You are in page ', $page->current, ' of ', $page->total_pages; ?>

[bookmark: using-adapters]

Using Adapters

An example of the source data that must be used for each adapter:

<?php

use Phalcon\Paginator\Adapter\Model as PaginatorModel;
use Phalcon\Paginator\Adapter\NativeArray as PaginatorArray;
use Phalcon\Paginator\Adapter\QueryBuilder as PaginatorQueryBuilder;

// Passing a resultset as data
$paginator = new PaginatorModel(
 [
 'data' => Products::find(),
 'limit' => 10,
 'page' => $currentPage,
]
);

// Passing an array as data
$paginator = new PaginatorArray(
 [
 'data' => [
 ['id' => 1, 'name' => 'Artichoke'],
 ['id' => 2, 'name' => 'Carrots'],
 ['id' => 3, 'name' => 'Beet'],
 ['id' => 4, 'name' => 'Lettuce'],
 ['id' => 5, 'name' => ''],
],
 'limit' => 2,
 'page' => $currentPage,
]
);

// Passing a QueryBuilder as data

$builder = $this->modelsManager->createBuilder()
 ->columns('id, name')
 ->from('Robots')
 ->orderBy('name');

$paginator = new PaginatorQueryBuilder(
 [
 'builder' => $builder,
 'limit' => 20,
 'page' => 1,
]
);

[bookmark: page-attributes]

Page Attributes

The $page object has the following attributes:

| Attribute | Description |
| ————- | —————————————————— |
| items | The set of records to be displayed at the current page |
| current | The current page |
| before | The previous page to the current one |
| next | The next page to the current one |
| last | The last page in the set of records |
| total_pages | The number of pages |
| total_items | The number of items in the source data |

[bookmark: custom]

Implementing your own adapters

The Phalcon\Paginator\AdapterInterface interface must be implemented in order to create your own paginator adapters or extend the existing ones:

<?php

use Phalcon\Paginator\AdapterInterface as PaginatorInterface;

class MyPaginator implements PaginatorInterface
{
 /**
 * Adapter constructor
 *
 * @param array $config
 */
 public function __construct($config);

 /**
 * Set the current page number
 *
 * @param int $page
 */
 public function setCurrentPage($page);

 /**
 * Returns a slice of the resultset to show in the pagination
 *
 * @return stdClass
 */
 public function getPaginate();
}

 Tutorial - basic

 	
 Tutorial - basic
 	
 File structure

 	
 Bootstrap
 	
 Autoloaders

 	
 Dependency Management

 	
 Handling the application request

 	
 Putting everything together

 Creating a Controller

 Sending output to a view

 Designing a sign up form

 Creating a Model

 Setting a Database Connection

 Storing data using models

 Conclusion

 Debugging Applications

 	
 Encryption/Decryption
 	
 Basic Usage

 	
 Encryption Options

 	
 Base64 Support

 	
 Setting up an Encryption service

[bookmark: overview]

Debugging Applications

[image:]

PHP offers tools to debug applications with notices, warnings, errors and exceptions. The Exception class [http://www.php.net/manual/en/language.exceptions.php] offers information such as the file, line, message, numeric code, backtrace etc. on where an error occurred. OOP frameworks like Phalcon mainly use this class to encapsulate this functionality and provide information back to the developer or user.

Despite being written in C, Phalcon executes methods in the PHP userland, providing the debug capability that any other application or framework written in PHP has.

Catching Exceptions

Throughout the tutorials and examples of the Phalcon documentation, there is a common element that is catching exceptions. This is a try/catch block:

<?php

try {

 // ... Some Phalcon/PHP code

} catch (\Exception $e) {

}

Any exception thrown within the block is captured in the variable $e. A Phalcon\Exception extends the PHP Exception class [http://www.php.net/manual/en/language.exceptions.php] and is used to understand whether the exception came from Phalcon or PHP itself.

All exceptions generated by PHP are based on the Exception class [http://www.php.net/manual/en/language.exceptions.php], and have at least the following elements:

<?php

class Exception
{

 /* Properties */
 protected string $message;
 protected int $code;
 protected string $file;
 protected int $line;

 /* Methods */
 public __construct ([string $message = '' [, int $code = 0 [, Exception $previous = NULL]]])
 final public string getMessage (void)
 final public Exception getPrevious (void)
 final public mixed getCode (void)
 final public string getFile (void)
 final public int getLine (void)
 final public array getTrace (void)
 final public string getTraceAsString (void)
 public string __toString (void)
 final private void __clone (void)
}

Retrieving information from Phalcon\Exception is the same as PHP’s Exception class [http://www.php.net/manual/en/language.exceptions.php]:

<?php

try {

 // ... App code ...

} catch (\Exception $e) {
 echo get_class($e), ': ', $e->getMessage(), '\n';
 echo ' File=', $e->getFile(), '\n';
 echo ' Line=', $e->getLine(), '\n';
 echo $e->getTraceAsString();
}

It’s therefore easy to find which file and line of the application’s code generated the exception, as well as the components involved in generating the exception:

PDOException: SQLSTATE[28000] [1045] Access denied for user 'root'@'localhost'
 (using password: NO)
 File=/Applications/MAMP/htdocs/invo/public/index.php
 Line=74
#0 [internal function]: PDO->__construct('mysql:host=loca...', 'root', '', Array)
#1 [internal function]: Phalcon\Db\Adapter\Pdo->connect(Array)
#2 /Applications/MAMP/htdocs/invo/public/index.php(74):
 Phalcon\Db\Adapter\Pdo->__construct(Array)
#3 [internal function]: {closure}()
#4 [internal function]: call_user_func_array(Object(Closure), Array)
#5 [internal function]: Phalcon\Di->_factory(Object(Closure), Array)
#6 [internal function]: Phalcon\Di->get('db', Array)
#7 [internal function]: Phalcon\Di->getShared('db')
#8 [internal function]: Phalcon\Mvc\Model->getConnection()
#9 [internal function]: Phalcon\Mvc\Model::_getOrCreateResultset('Users', Array, true)
#10 /Applications/MAMP/htdocs/invo/app/controllers/SessionController.php(83):
 Phalcon\Mvc\Model::findFirst('email='demo@pha...')
#11 [internal function]: SessionController->startAction()
#12 [internal function]: call_user_func_array(Array, Array)
#13 [internal function]: Phalcon\Mvc\Dispatcher->dispatch()
#14 /Applications/MAMP/htdocs/invo/public/index.php(114): Phalcon\Mvc\Application->handle()
#15 {main}

As you can see from the above output the Phalcon’s classes and methods are displayed just like any other component, and even showing the parameters that were invoked in every call. The method Exception::getTrace [http://www.php.net/manual/en/exception.gettrace.php] provides additional information if needed.

Debug component

Phalcon provides a debug component that allows the developer to easily find errors produced in an application created with the framework.

The following screencast explains how it works:

 Requirements

 	
 Requirements
 	
 Hardware

 	
 Software

 Installation

 Linux

 DEB based distributions (Debian, Ubuntu, etc.)

 Repository installation

 Stable releases

 Nightly releases

 Phalcon installation

 PHP 5.x

 PHP 7

 Additional PPAs

 RPM based distributions (CentOS, Fedora, etc.)

 Repository installation

 Stable releases

 Nightly releases

 Phalcon installation

 PHP 5.x

 PHP 7

 Additional RPMs

 FreeBSD

 Gentoo

 MacOS

 Brew

 MacPorts

 Windows

 Compile from sources

 Advanced Compilation

[bookmark: requirements]

Requirements

Phalcon needs PHP to run. Its loosely coupled design allows developers to install Phalcon and use its functionality without additional extensions. Certain components have dependencies to other extensions. For instance using database connectivity will require the php_pdo extension. If your RDBMS is MySql/MariaDb or Aurora databases you will need the php_mysqlnd extension also. Similarly, using a PostgreSql database with Phalcon requires the php_pgsql extension.

[bookmark: requirements-hardware]

Hardware

Phalcon is designed to use as little resources as possible, while offering high performance. Although we have tested Phalcon in various low end environments, (such as 0.25GB RAM, 0.5 CPU), the hardware that you will choose will depend on the your application needs.

Our website and blog (as well as other sites) are hosted on an Amazon VM with 512MB RAM and 1 vCPU.

[bookmark: requirements-software]

Software

	PHP >= 5.5

You should always try and use the latest version of Phalcon and PHP as both address bugs, security enhancements as well as performance. PHP 5.5 will be deprecated in the near future, and Phalcon 4 will only support PHP 7
Phalcon need the following extensions to run (minimal):

	curl

	gettext

	gd2 (for the Image class)

	libpcre3-dev (Debian/Ubuntu), pcre-devel (CentOS), pcre (Mac OS)

	json

	mbstring

	pdo_*

	fileinfo

	openssl

Optional depending on the needs of your application

	PDO [http://php.net/manual/en/book.pdo.php] Extension as well as the relevant RDBMS specific extension (i.e. MySQL [http://php.net/manual/en/ref.pdo-mysql.php], PostgreSql [http://php.net/manual/en/ref.pdo-pgsql.php] etc.)

	OpenSSL [http://php.net/manual/en/book.openssl.php] Extension

	Mbstring [http://php.net/manual/en/book.mbstring.php] Extension

	Memcache [http://php.net/manual/en/book.memcache.php], Memcached [http://php.net/manual/en/book.memcached.php] or other relevant cache adapters depending on your usage of cache.

[bookmark: installation]

Installation

Since Phalcon is compiled as a PHP extension, its installation is somewhat different than any other traditional PHP framework. Phalcon needs to be installed and loaded as a module on your web server.

[bookmark: installation-linux]

Linux

To install Phalcon on linux, you will need to add our repository in your distribution and then install it.

[bookmark: installation-linux-debian]

DEB based distributions (Debian, Ubuntu, etc.)

[bookmark: installation-linux-debian-repository]

Repository installation

Add the repository to your distribution:

[bookmark: installation-linux-debian-repository-stable]

Stable releases

curl -s https://packagecloud.io/install/repositories/phalcon/stable/script.deb.sh | sudo bash

or

[bookmark: installation-linux-debian-repository-nightly]

Nightly releases

curl -s https://packagecloud.io/install/repositories/phalcon/nightly/script.deb.sh | sudo bash

This only needs to be done only once, unless your distribution changes or you want to switch from stable to nightly builds.
[bookmark: installation-linux-debian-phalcon]

Phalcon installation

To install Phalcon you need to issue the following commands in your terminal:

[bookmark: installation-linux-debian-phalcon-php5]

PHP 5.x

sudo apt-get update
sudo apt-get install php5-phalcon

[bookmark: installation-linux-debian-phalcon-php7]

PHP 7

sudo apt-get update
sudo apt-get install php7.0-phalcon

[bookmark: installation-linux-debian-other-ppa]

Additional PPAs

Ondřej Surý

If you do not wish to use our packagecloud.io repository, you can always use the one offered by Ondřej Surý [https://launchpad.net/~ondrej/+archive/ubuntu/php/].

Installation of the repo:

sudo add-apt-repository ppa:ondrej/php
sudo apt-get update

and Phalcon:

sudo apt-get install php-phalcon

https://launchpad.net/~ondrej/+archive/ubuntu/php/

[bookmark: installation-linux-rpm]

RPM based distributions (CentOS, Fedora, etc.)

[bookmark: installation-linux-rpm-repository]

Repository installation

Add the repository to your distribution:

[bookmark: installation-linux-rpm-repository-stable]

Stable releases

curl -s https://packagecloud.io/install/repositories/phalcon/stable/script.rpm.sh | sudo bash

or

[bookmark: installation-linux-rpm-repository-nightly]

Nightly releases

curl -s https://packagecloud.io/install/repositories/phalcon/nightly/script.rpm.sh | sudo bash

This only needs to be done only once, unless your distribution changes or you want to switch from stable to nightly builds.
[bookmark: installation-linux-rpm-phalcon]

Phalcon installation

To install Phalcon you need to issue the following commands in your terminal:

[bookmark: installation-linux-rpm-phalcon-php5]

PHP 5.x

sudo yum update
sudo yum install php56u-phalcon

[bookmark: installation-linux-rpm-phalcon-php7]

PHP 7

sudo yum update
sudo yum install php70u-phalcon

[bookmark: installation-linux-rpm-other-rpm]

Additional RPMs

Remi

Remi maintains an excellent repository for RPM based installations. You can find instructions on how to enable it for your distribution here [https://blog.remirepo.net/pages/Config-en]

Installing Phalcon after that is as easy as:

yum install php56-php-phalcon3

Additional versions are available both architecture specific (x86/x64) as well as PHP specific (5.5, 5.6, 7.x)

[bookmark: installation-freebsd]

FreeBSD

A port is available for FreeBSD. To install it you will need to issue the following commands:

pkg_add

pkg_add -r phalcon

Source

export CFLAGS="-O2 --fvisibility=hidden"

cd /usr/ports/www/phalcon

make install clean

[bookmark: installation-gentoo]

Gentoo

An overlay for installing Phalcon can be found here https://github.com/smoke/phalcon-gentoo-overlay

[bookmark: installation-macos]

Mac OS X

On a Mac OS X system you can compile and install the extension with brew, macports or the source code:

Requirements

	PHP 5.5.x/5.6.x/7.0.x/7.1.x development resources

	XCode

[bookmark: installation-macos-brew]

Brew

brew tap homebrew/homebrew-php
brew install php55-phalcon
brew install php56-phalcon
brew install php70-phalcon
brew install php71-phalcon

[bookmark: installation-macos-macports]

MacPorts

sudo port install php55-phalcon
sudo port install php56-phalcon

Edit your php.ini file and then append at the end:

extension=php_phalcon.so

Restart your webserver.

[bookmark: installation-windows]

Windows

To use Phalcon on Windows, you will need to install the phalcon.dll. We have compiled several DLLs depending on the target platform. The DLLs can be found in our download [https://phalconphp.com/en/download/windows] page.

Identify your PHP installation as well as architecture. If you download the wrong DLL, Phalcon will not work. phpinfo() contains this information. In the example below, we will need the NTS version of the DLL:

[image: phpinfo]

The available DLLs are:

| Architecture | Version | Type |
|:————:|:——-:| ——————— |
| x64 | 7.x | Thread safe |
| x64 | 7.x | Non Thread safe (NTS) |
| x86 | 7.x | Thread safe |
| x86 | 7.x | Non Thread safe (NTS) |
| x64 | 5.6 | Thread safe |
| x64 | 5.6 | Non Thread safe (NTS) |
| x86 | 5.6 | Thread safe |
| x86 | 5.6 | Non Thread safe (NTS) |

Edit your php.ini file and then append at the end:

extension=php_phalcon.dll

Restart your webserver.

[bookmark: installation-sources]

Compile from Sources

Compiling from source is similar to most environments (Linux/Mac).

Requirements

	PHP 5.5.x/5.6.x/7.0.x/7.1.x development resources

	GCC compiler (Linux/Solaris/FreeBSD) or Xcode (MacOS)

	re2c >= 0.13

	libpcre-dev

You can install these packages in your system with the relevant package manager. Instructions for popular linux distributions are below:

Ubuntu

sudo apt-get install php5-dev libpcre3-dev gcc make

Suse

sudo zypper install php5-devel gcc make

CentOS/Fedora/RHEL

sudo yum install php-devel pcre-devel gcc make

Compile Phalcon

We first need to clone Phalcon from the Github repository

git clone https://github.com/phalcon/cphalcon

and now build the extension

cd cphalcon/build
sudo ./install

You will now need to add extension=phalcon.so to your PHP ini and restart your web server, so as to load the extension.

Suse: Add a file called phalcon.ini in /etc/php5/conf.d/ with this content:
extension=phalcon.so

CentOS/RedHat/Fedora: Add a file called phalcon.ini in /etc/php.d/ with this content:
extension=phalcon.so

Ubuntu/Debian with apache2: Add a file called 30-phalcon.ini in /etc/php5/apache2/conf.d/ with this content:
extension=phalcon.so

Ubuntu/Debian with php5-fpm: Add a file called 30-phalcon.ini in /etc/php5/fpm/conf.d/ with this content:
extension=phalcon.so

Ubuntu/Debian with php5-cli: Add a file called 30-phalcon.ini in /etc/php5/cli/conf.d/ with this content:
extension=phalcon.so

[bookmark: installation-sources-advanced]

Advanced Compilation

Phalcon automatically detects your architecture, however, you can force the compilation for a specific architecture:

cd cphalcon/build

One of the following:
sudo ./install --arch 32bits
sudo ./install --arch 64bits
sudo ./install --arch safe

If the automatic installer fails you can build the extension manually

git clone https://github.com/phalcon/cphalcon
cd cphalcon/build/php5/32bits
cd cphalcon/build/php5/64bits

NOTE: for PHP 7 you have to use
cd cphalcon/build/php7/32bits
or
cd cphalcon/build/php7/64bits

make clean
phpize --clean

export CFLAGS="-O2 --fvisibility=hidden"
./configure --enable-phalcon

make
make install

If you have specific php versions running

git clone https://github.com/phalcon/cphalcon
cd cphalcon/build/php5/32bits
cd cphalcon/build/php5/64bits

NOTE: for PHP 7 you have to use
cd cphalcon/build/php7/32bits
or
cd cphalcon/build/php7/64bits

make clean
/opt/php-5.6.15/bin/phpize --clean

export CFLAGS="-O2 --fvisibility=hidden"
./configure --with-php-config=/opt/php-5.6.15/bin/php-config --enable-phalcon

make
make install

You will now need to add extension=phalcon.so to your PHP ini and restart your web server, so as to load the extension.

[bookmark: installation-testing]
You can create a small script in your web server root that has the following in it:

<?php

phpinfo();

and load it on your web browser. There should be a section for Phalcon. If there is not, make sure that your extension has been compiled properly, that you made the necessary changes to your php.ini and also that you have restarted your web server.

You can also check your installation from the command line:

php -r 'print_r(get_loaded_extensions());'

This will output something similar to this:

Array
(
 [0] => Core
 [1] => libxml
 [2] => filter
 [3] => SPL
 [4] => standard
 [5] => phalcon
 [6] => pdo_mysql
)

You can also see the modules installed using the CLI:

php -m

Note that in some Linux based systems, you might need to change two php.ini files, one for your web server (Apache/Nginx), and one for the CLI. If Phalcon is loaded only for say the web server, you will need to locate the CLI php.ini and make the necessary additions for the module to be loaded.

 Installation on XAMPP

 	
 Overview
 	
 Download the right version of Phalcon

 	
 Screencast

 	
 Related

[bookmark: overview]

Installation on XAMPP

XAMPP [https://www.apachefriends.org/download.html] is an easy to install Apache distribution containing MySQL, PHP and Perl. Once you download XAMPP, all you have to do is extract it and start using it. Below are detailed instructions on how to install Phalcon on XAMPP for Windows. Using the latest XAMPP version is highly recommended.

[bookmark: phalcon]

Download the right version of Phalcon

XAMPP is always releasing 32 bit versions of Apache and PHP. You will need to download the x86 version of Phalcon for Windows from the download section.

After downloading the Phalcon library you will have a zip file like the one shown below:

[image:]

Extract the library from the archive to get the Phalcon DLL:

[image:]

Copy the file php_phalcon.dll to the PHP extensions directory. If you have installed XAMPP in the C:\xampp folder, the extension needs to be in C:\xampp\php\ext

[image:]

Edit the php.ini file, it is located at C:\xampp\php\php.ini. It can be edited with Notepad or a similar program. We recommend Notepad++ to avoid issues with line endings. Append at the end of the file:

extension=php_phalcon.dll

and save it.

[image:]

Restart the Apache Web Server from the XAMPP Control Center. This will load the new PHP configuration.

[image:]

Open your browser to navigate to http://localhost. The XAMPP welcome page will appear. Click on the link phpinfo().

[image:]

phpinfo() will output a significant amount of information on screen about the current state of PHP. Scroll down to check if the phalcon extension has been loaded correctly.

[image:]

If you can see the phalcon version in the phpinfo() output, congratulations!, You are now phlying with Phalcon.

[bookmark: screencast]

Screencast

The following screencast is a step by step guide to install Phalcon on Windows:

 Cookies Management

 	
 Cookies Management
 	
 Basic Usage

 	
 Encryption/Decryption of Cookies

[bookmark: overview]

Cookies Management

Cookies [http://en.wikipedia.org/wiki/HTTP_cookie] are a very useful way to store small pieces of data on the client’s machine that can be retrieved even if the user closes his/her browser. Phalcon\Http\Response\Cookies acts as a global bag for cookies. Cookies are stored in this bag during the request execution and are sent automatically at the end of the request.

[bookmark: usage]

Basic Usage

You can set/get cookies by just accessing the cookies service in any part of the application where services can be accessed:

<?php

use Phalcon\Mvc\Controller;

class SessionController extends Controller
{
 public function loginAction()
 {
 // Check if the cookie has previously set
 if ($this->cookies->has('remember-me')) {
 // Get the cookie
 $rememberMeCookie = $this->cookies->get('remember-me');

 // Get the cookie's value
 $value = $rememberMeCookie->getValue();
 }
 }

 public function startAction()
 {
 $this->cookies->set(
 'remember-me',
 'some value',
 time() + 15 * 86400
);
 }

 public function logoutAction()
 {
 $rememberMeCookie = $this->cookies->get('remember-me');

 // Delete the cookie
 $rememberMeCookie->delete();
 }
}

[bookmark: encryption-decryption]

Encryption/Decryption of Cookies

By default, cookies are automatically encrypted before being sent to the client and are decrypted when retrieved from the user. This protection prevents unauthorized users to see the cookies’ contents in the client (browser). Despite this protection, sensitive data should not be stored in cookies.

You can disable encryption as follows:

<?php

use Phalcon\Http\Response\Cookies;

$di->set(
 'cookies',
 function () {
 $cookies = new Cookies();

 $cookies->useEncryption(false);

 return $cookies;
 }
);

If you wish to use encryption, a global key must be set in the crypt service:

 <?php

 use Phalcon\Crypt;

 $di->set(
 'crypt',
 function () {
 $crypt = new Crypt();

 $crypt->setKey('#1dj8$=dp?.ak//j1V$'); // Use your own key!

 return $crypt;
 }
);

Sending cookies data without encryption to clients including complex objects structures, resultsets, service information, etc. could expose internal application details that could be used by an attacker to attack the application. If you do not want to use encryption, we highly recommend you only send very basic cookie data like numbers or small string literals.

 Installation on WAMP

 	
 Overview
 	
 Download the right version of Phalcon

 	
 Related

[bookmark: overview]

Installation on WAMP

WampServer [http://www.wampserver.com/en/] is a Windows web development environment. It allows you to create web applications with Apache2, PHP and a MySQL database. Below are detailed instructions on how to install Phalcon on WampServer for Windows. Using the latest WampServer version is highly recommended.

[bookmark: phalcon]

Download the right version of Phalcon

WAMP has both 32 and 64 bit versions. From the download section, you can download the Phalcon DLL that suits your WAMPP installation.

After downloading the Phalcon library you will have a zip file like the one shown below:

[image:]

Extract the library from the archive to get the Phalcon DLL:

[image:]

Copy the file php_phalcon.dll to the PHP extensions folder. If WAMP is installed in the C:\wamp folder, the extension needs to be in C:\wamp\bin\php\php5.5.12\ext (assuming your WAMP installation installed PHP 5.5.12).

[image:]

Edit the php.ini file, it is located at C:\wamp\bin\php\php5.5.12\php.ini. It can be edited with Notepad or a similar program. We recommend Notepad++ to avoid issues with line endings. Append at the end of the file:

and save it.

 Also edit the `php.ini` file, which is located at `C:\wamp\bin\apache\apache2.4.9\bin\php.ini`. Append at the end of the file:

    ```ini
    extension=php_phalcon.dll 
    

and save it.

Restart the Apache Web Server. Do a single click on the WampServer icon at system tray. Choose `Restart All Services` from the pop-up menu. Check out that tray icon will become green again.

![](/images/content/webserver-wamp-3.png)

Open your browser to navigate to http://localhost. The WAMP welcome page will appear. Check the section `extensions loaded` to ensure that phalcon was loaded.

![](/images/content/webserver-wamp-4.png)

Congratulations! You are now phlying with Phalcon.

<a name='related'></a>

## Related Guides

- [Installation on XAMPP](/[[language]]/[[version]]/webserver-xampp)











          

      

      

    

  

  
    
    
    Dependency Injection / Service Location
    
    

    
 
  
  

    
      
          
            
  
  
    	
      Dependency Injection / Service Location 
        	
          DI explained
        

        	
          Registering services in the Container 
            	
              Simple Registration 
                	
                  String
                

                	
                  Class instances
                

                	
                  Closures/Anonymous functions
                

              

            
        <li>
          <a href="#complex-registration">Complex Registration</a> <ul>
            <li>
              <a href="#constructor-injection">Constructor Injection</a>
            </li>
            <li>
              <a href="#setter-injection">Setter Injection</a>
            </li>
            <li>
              <a href="#properties-injection">Properties Injection</a>
            </li>
          </ul>
        </li>
        
        <li>
          <a href="#array-syntax">Array Syntax</a>
        </li>
      </ul>
    </li>
    
    <li>
      <a href="#resolving-services">Resolving Services</a> <ul>
        <li>
          <a href="#events">Events</a>
        </li>
      </ul>
    </li>
    
    <li>
      <a href="#shared-services">Shared services</a>
    </li>
    <li>
      <a href="#manipulating-services-individually">Manipulating services individually</a>
    </li>
    <li>
      <a href="#instantiating-classes-service-container">Instantiating classes via the Service Container</a>
    </li>
    <li>
      <a href="#automatic-injecting-di-itself">Automatic Injecting of the DI itself</a>
    </li>
    <li>
      <a href="#organizing-services-files">Organizing services in files</a>
    </li>
    <li>
      <a href="#accessing-di-static-way">Accessing the DI in a static way</a>
    </li>
    <li>
      <a href="#factory-default-di">Factory Default DI</a>
    </li>
    <li>
      <a href="#service-name-conventions">Service Name Conventions</a>
    </li>
    <li>
      <a href="#implementing-your-own-di">Implementing your own DI</a>
    </li>
  </ul>
</li>





  


  
    
    
    The MVC Architecture
    
    

    
 
  
  

    
      
          
            
  
  
    	
      The MVC Architecture 
        	
          Models
        

        	
          Views
        

        	
          Controllers
        

      

    

  


[bookmark: architecture]


The MVC Architecture

Phalcon offers the object-oriented classes, necessary to implement the Model, View, Controller architecture (often referred to as MVC [https://en.wikipedia.org/wiki/Model–view–controller]) in your application. This design pattern is widely used by other web frameworks and desktop applications.

MVC benefits include:


	Isolation of business logic from the user interface and the database layer

	Making it clear where different types of code belong for easier maintenance



If you decide to use MVC, every request to your application resources will be managed by the MVC architecture. Phalcon classes are written in C language, offering a high performance approach of this pattern in a PHP based application.

[bookmark: models]


Models

A model represents the information (data) of the application and the rules to manipulate that data. Models are primarily used for managing the rules of interaction with a corresponding database table. In most cases, each table in your database will correspond to one model in your application. The bulk of your application’s business logic will be concentrated in the models. Learn more

[bookmark: views]




Views

Views represent the user interface of your application. Views are often HTML files with embedded PHP code that perform tasks related solely to the presentation of the data. Views handle the job of providing data to the web browser or other tool that is used to make requests from your application. Learn more

[bookmark: controllers]




Controllers

The controllers provide the ‘flow’ between models and views. Controllers are responsible for processing the incoming requests from the web browser, interrogating the models for data, and passing that data on to the views for presentation. Learn more







          

      

      

    

  

  
    
    
    Phalcon Developer Tools on Linux
    
    

    
 
  
  

    
      
          
            
  
  
    	
      DevTools on Linux 
        	
          Prerequisites
        

        	
          Installation 
            	
              Linux
            

            	
              MacOS
            

            	
              Windows 
                	
                  Adding PHP and Tools to your system PATH
                

              

            

          

        

      

    

  


[bookmark: overview]


Phalcon Developer Tools on Linux

These steps will guide you through the process of installing Phalcon Developer Tools for Linux.

[bookmark: prerequisites]


Prerequisites

The Phalcon PHP extension is required to run Phalcon Tools. If you haven’t installed it yet, please see the Installation section for instructions.

[bookmark: installation]




Installation

You can download a cross platform package containing the developer tools from from Github [https://github.com/phalcon/phalcon-devtools]

[bookmark: installation-linux]


Linux

Open a terminal and type the command below:

git clone git://github.com/phalcon/phalcon-devtools.git





[image: ]

Then enter the folder where the tools were cloned and execute . ./phalcon.sh, (don’t forget the dot at beginning of the command):

cd phalcon-devtools/
. ./phalcon.sh





[image: ]

Create a symbolic link to the phalcon.php script:

ln -s ~/phalcon-devtools/phalcon.php /usr/bin/phalcon
chmod ugo+x /usr/bin/phalcon





[bookmark: installation-mac]




MacOS

Open a terminal and type the command below:

git clone git://github.com/phalcon/phalcon-devtools.git





[image: ]

Then enter the folder where the tools were cloned and execute . ./phalcon.